Initial Operating Experience with the New Polish Waste-to-Energy Plants

Waste-to-Energy plants are an integral part of modern municipal Waste Management Systems. Today recycling and energy recovery from waste are the only methods of dealing with municipal waste. This is demonstrated by Waste Management Systems in countries such as Germany, Sweden, the Netherlands, Belgium, Denmark and Austria, where the municipal waste management is limited solely to recycling and energy recovery from waste. The currently discussed concept of the latest circular economy package can hardly change anything in this matter. Poland, as one of the leaders among the new EU member states (since 2004), has still a lot to do within the scope of recycling and waste-to-energy.

Development of waste-to-energy plants – hereinafter referred to as WtE plants – in Poland is connected with the decision of 7 December 2007 when the European Commission approved the Operational Programme Infrastructure and Environment 2007 to 2013.This program implements large investment in the Polish sectors: environmental protection(5.1 billion EUR available from EU funds), transport (19.6 billion EUR), energy industry (1.7 billion EUR), culture and national heritage (0.53 billion EUR), health (0.395 billion EUR) and higher education (0.586 billion EUR). The main goal of this program, based on the Cohesion Fund (CF) and the European Regional Development Fund, was to improve the investment attractiveness in Poland and its regions through the development of technical infrastructure while protecting and improving the environment,
health, preserving cultural identity and developing territorial cohesion.



Copyright: © Thomé-Kozmiensky Verlag GmbH
Quelle: Waste Management, Volume 6 (September 2016)
Seiten: 9
Preis inkl. MwSt.: € 0,00
Autor: Prof. Ph. D., Eur. Ing. (Dr.-Ing. habil.) Tadeusz Pajak
Michał Jurczyk

Artikel weiterleiten Artikel kostenfrei anzeigen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Resource Recovery from Waste Using the Input Flexibility of Waste Gasification Technology
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Nowadays, gasification of waste or biomass is becoming the great interest all over the world. Especially, gasification of municipal solid waste (MSW) has been well-researched in Japan. The development of MSW gasification technology was started in the 1970s in Japan because of oil crisis. Several technologies have been researched and developed. The Direct Melting System (DMS), which is the gasification and melting technology developed by Nippon Steel & Sumikin Engineering Co., Ltd., is one of the developed waste gasification technologies in this era. This technology was introduced for commercial use in Kamaishi City, Japan in 1979. As well as this waste technology, other gasification technologies have been developed for commercial use and installed.

Overview of the Pyrolysis and Gasification Processes for Thermal Disposal of Waste
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Thermal treatment of waste started in the 1870s in England with the first waste incineration plants and this technology was in short time adopted by many industrialised countries. Starting in the late 1970s waste incineration was blamed for emission of toxic compounds, in particular of dioxins, and public pressure initiated the decree of more and more stringent air emission standards in all countries which, again, induced significant improvement of the environmental performance of waste incineration.

New Waste-to-Energy Facility Energy Works Hull, United Kingdom
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Energy Works Hull (the Project) is a milestone project for the UK’s waste and renewable energy sector. It will be one of the largest gasification facilities receiving MSW in the UK, indeed in Europe. It is one of the first advanced conversion technology Projects to receive its renewable electricity subsidies through a Contract for Difference, the mechanism by which the UK Government determined to move from Renewable Obligation Certificates following its Electricity Market Reform process. It also plays a significant part of the urban regeneration of the City of Hull. The level of community engagement and benefit has resulted in the project receiving a GBP19.9M grant from the European Union’s Regional Development Fund.

The Added Value of the Balance Method for Waste-to-Energy Operators and National Authorities
© Thomé-Kozmiensky Verlag GmbH (9/2016)
Different directives of the European Union may require operators of Waste to Energy WTE plants to monitor the composition of their waste feed with respect to the Content of biomass and fossil organic matter. The mass fractions of both materials are not only of relevance for the amount of fossil and thus climate relevant CO2 emissions of the plant, but also for the ratio of renewable energy generated, as biomass in wastes is considered as renewable energy source.

Complex Approach towards the Assessment of Waste-to-Energy Plants’ Future Potential
© Thomé-Kozmiensky Verlag GmbH (9/2016)
There is a fierce debate ongoing about future recycling targets for municipal solid waste (MSW) at the European level. The old linear concept of waste management is being changed into a circular economy. Since the separation yield and post-recycling MSW (later on residual solid waste, RSW) production have an opposite relationship, assuming the constant production of particular components (paper, plastics etc.), lower RSW rates are also expected. This is having a negative effect on Waste-to-energy (WtE); especially in terms of its future optimum capacity in particular countries.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?