Heiße Abgase als Energiequelle: Wärmerückgewinnung aus Rauchgas deckt Grundlast vollständig ab

Veränderungen oder Erweiterungen im Energiebedarfsprofil von Industriebetrieben sind auch für erfahrene Ingenieurdienstleister eine große Herausforderung. Das Ingenieurbüro Gammel Engineering aus Abensberg hat sich auf die Planung und Realisierung einer individuellen zukunftsorientierten Energieversorgung in Unternehmen spezialisiert. Ein Beispiel hierfür ist eine Anlage zur Wärmerückgewinnung für das BMW Group Werk Landshut.

Foto: Gammel Engineering (04.05.2018) Industriebetriebe haben fast immer ein individuelles Energiebedarfsprofil, das sich nicht mit den Systemen anderer Betriebe vergleichen lässt. Schon vor einigen Jahren plante die BMW Group für ihr Werk in Landshut eine neue Aluminiumschmelze und suchte eine Möglichkeit, die Wärmeenergie aus dem Abgas zurückzugewinnen. Zusätzlich sollte ein komplett neues Energiekonzept für den Standort erarbeitet werden. Die bis dahin vorhandenen Einrichtungen zur Energieversorgung bestanden aus drei Gaskesseln mit je 16 MWth Leistung und zwei Blockheizkraftwerken mit je 1,4 MWth und 1,4 MWel Leistung. Mit der Umsetzung dieses Vorhabens beauftragte die BMW Group im Rahmen eines Energie-Einspar-Contractings ein Konsortium aus der ArGe Siemens AG/Ulrich Müller GmbH und die Gammel Engineering GmbH. Inzwischen ist die Anlage schon eine Zeitlang in Betrieb.
In der Leichtmetallgießerei am BMW Group Standort Landshut wird mit Hilfe von Gasbrennern in insgesamt sechs Öfen angeliefertes Aluminium-Festmaterial geschmolzen, wobei für gewöhnlich drei Öfen im Schmelzbetrieb und drei im Warmhaltebetrieb laufen. Das Rauchgas, das dabei austritt, hat eine Temperatur von etwa 640 °C. Ursprünglich wurde angenommen, dass eine Abkühlung erforderlich wäre, um den nachgeschalteten Feinstaubfilter nicht zu schädigen. Dies stellte sich jedoch als überflüssig heraus; eine Abkühlung war nicht mehr notwendig. Wie aber ließe sich die Wärme des Abgases anderweitig nutzen?...

Unternehmen, Behörden + Verbände: Siemens AG/Ulrich Müller GmbH (München, Heppenheim); Gammel Engineering (Abensberg), BMW Group
Autorenhinweis: Michael Gammel, Geschäftsführung Gammel Enginnering GmbH
Foto: Gammel Engineering



Copyright: © Deutscher Fachverlag (DFV)
Quelle: Nr. 2 - Mai 2018 (Mai 2018)
Seiten: 2
Preis inkl. MwSt.: € 3,00
Autor: Michael Gammel

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Environmental effects of fireworks with special consideration of plastic emissions
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
In Germany, about 133 million Euro are spent annually for New Year’s Eve fireworks, which result in 38,000 to 49,000 Mg of total firework mass. By a com-bination of desk research with official fireworks approval statistics, a customer survey, dismantling experiments with fireworks debris and with packaging characterisation, the total nationwide polymer emission was estimated to be 3,088 Mg. Out of this total mass, a projected polymer debris mass of 534 Mg was identified, and about 270 Mg of polymer packaging material. The remaining 2283 Mg of polymer mass are parts that eventually may remain at the launching site.

Co-Processing von Ersatzbrennstoffen: Beitrag der Zement-industrie zur Recyclingrate
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz von Ersatzbrennstoffen (EBS) gewinnt in der Zementindustrie immer mehr an Bedeutung. In Österreich besonders hervorzuheben sind dabei kunststoffrei-che EBS, die mittlerweile den größten Anteil der eingesetzten Ersatzbrennstoffe aus-machen (Mauschitz 2019; Sarc et al. 2020). Auch die Zementindustrie könnte dadurch einen Beitrag zur Erreichung der im EU Kreislaufwirtschaftspaket festgelegten Recyclingziele leisten, sofern der recycelte bzw. in den Klinker eingebundene Anteil des EBS auch rechtlich als stoffliches Recycling anerkannt und den EU Recyclingzielen zugerechnet wird. An der Montanuni-versität Leoben wurde daher mittels Analysen des Aschegehalts und der Aschezu-sammensetzung damit begonnen, eine wissenschaftlich fundierte Datengrundlage für diese Fragestellung zu schaffen.

Entwicklungen auf dem Gebiet der sensorgestützten Sortierung von Müll bei Binder+Co
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der Einsatz modernster Maschinen in der Aufbereitung und Recycling von primären und sekundären Rohstoffen ist in der heutigen Zeit nicht mehr wegzudenken. Binder+Co kann in diesem Bereich auf eine 125 Jahre lange Erfahrung zurückblicken und ist Pionier im Bereich der sensorgestützten Sortierung von Schüttgütern. Die ersten Sortierer dieser Art wurden bereits Mitte der 1980er ausgeliefert (Kalcher 2011). Seither wurden die Sortierer konsequent hinsichtlich Sensorik und Effektorik weiter-entwickelt und decken alle gängigen Sensortechnologien ab. Dadurch ist die Produktlinie namens CLARITY, welche die optischen Sortierer von Binder+Co im Bereich Recycling abdeckt, seit Jahrzenten eine etablierte Technologie.

Untersuchungen zur mechanischen Entschichtung von Elektroden aus Lithium-Ionen-Altbatterien
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Der weltweite zunehmende Einsatz von LIB führt auch zu einer steigenden Menge von Produktions- und Konsumptionsrückständen, die unter Berücksichtigung der ökologischen und wirtschaftlichen Nachhaltigkeit entsorgt werden müssen. Idealerweise werden die Materialien aus den Neuschrotten oder Altbatterien in die Produktion neuer Batterien zurückgeführt. LIBs enthalten werthaltige Metalle, wie Aluminium, Eisen, Kupfer, Lithium, Kobalt, Nickel und Mangan. Diese Metalle, ausgenommen Eisen, bilden hauptsächlich die Stromleiterfolien und Beschichtungen der Elektroden. Aktuell werden Lithium-Ionen-Batterien industriell in Recyclingverfahren behandelt, die auf energie- und kostenintensiven pyrometallurgischen oder hydrometallurgischen Prozessen mit begrenzten Kapazitäten, niedrigen Recyclingraten und einer wirtschaftlichen Abhängigkeit von Kobalt und Nickel als Kathodenmaterialien basieren. Bei diesen Prozessen werden vornehmlich Kobalt, Nickel und Kupfer zurückgewonnen, wohingegen Lithium, Aluminium und Mangan in der Schlacke verbleiben und durch Verfüllung verwertet werden. In Zukunft wird angestrebt, die gesetzliche Recyclingeffizienz von 50 Masseprozent zu erhöhen, und speziell die Kathodenbeschichtungsmaterialien aus Produktionsrückständen direkt für neue Batterieanwendungen wiederzuverwenden (Werner et al. 2020).

Recycling von Al-Schrotten mit hohem Organikanteil
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Beim Al-Recycling sind zwei grundlegende Verfahrensvarianten zu unterscheiden. Umschmelzwerke (Remelter) dienen der Produktion von Knetlegierungen durch Ein-satz wenig verunreinigter Schrotte. Stärker kontaminierte Materialien, zu denen auch Al-Schrotte mit hohem Organikanteil zählen, gelangen unter Verdünnung mit Reinaluminium und Zusatz von Salzen in Schmelzhütten (Refiner), wo Gusslegierungen hergestellt werden. Im Rahmen des Beitrags erfolgte die Erläuterung von industriell eingesetzten Verfahren zum Recycling von Al-Schrotten mit hohem Organikgehalt. In diesem Zusammenhang wird auch auf die Notwendigkeit von ausreichenden Industrieanlagen zum Schließen der Kreisläufe´eingegangen.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?