Der Aufbereitung von Reststoffen zur stofflichen bzw. energetischen Verwertung kommt in unserer Gesellschaft eine stetig steigende Bedeutung zu. Die Zerkleinerung stellt dabei oftmals einen ersten, zentralen Arbeitsschritt dar, sei es zur Herstellung bestimmter Dispersitäten, etwa um eine Verwendung als Ersatzbrennstoff zu ermöglichen, oder zur Herstellung ausreichender Aufschlussverhältnisse für einen nachfolgenden Sortierschritt zur stofflichen Verwertung der enthaltenen Wertstoffe.
Dem Zerkleinern von Primärrohstoffen als wesentlichen Grundprozess der Aufbereitungstechnik wurde u.a. aufgrund des hohen spezifischen Energieverbrauches seit jeher ein breiter Raum für Forschungsaktivitäten gewidmet. Die zum Einsatz gelangenden Wirkmechanismen und die Möglichkeiten zu deren Verbesserung werden weltweit intensiv beforscht und die Vielfalt an am Markt etablierten Aggregaten ermöglicht eine Auswahl des für die jeweilige Zerkleinerungsaufgabe bestmöglich geeigneten Maschinentyps.
Zudem stehen verschiedenste Labortests zur Verfügung, anhand derer optimale Betriebsbedingungen aufgefunden, betriebsrelevante Parameter messtechnisch erfasst und anhand etablierter Kennzahlen beschrieben werden können.
Bei der Zerkleinerung von Sekundärrohstoffen rückt die Energieeffizienz erst seit Kurzem in den Fokus der damit befassten Aufbereitungsingenieure, für die sich damit breite und herausfordernde Betätigungsfelder und forschungsrelevante Aktivitäten auftun. So stößt die Übertragung der Erkenntnisse der Zerkleinerung von Primärrohstoffen auf die von Sekundärrohstoffen an gewisse Grenzen, bedingt etwa durch die ausgesprochene Heterogenität der zu zerkleinernden Reststoffe.
In einem mehrjährigen Forschungsprojekt hat sich das Unternehmen Lindner Recyclingtech GmbH der Ergründung von Einflussfaktoren bei der Zerkleinerung von festen Abfällen als Grundlage für einen optimierten wie auch energieeffizienten Maschinenbetrieb angenommen. In dem von der FFG geförderten Forschungsprojekt wurde der Lehrstuhl für Aufbereitung und Veredlung der Montanuniversität Leoben als Forschungspartner ins Boot geholt.
In einem ersten Schritt wurde eine Technikumsanlage entwickelt, gebaut und in Betrieb genommen, die es gestattet, relevante Betriebsparameter messtechnisch zu erfassen. In dem darauf folgenden zweiten Schritt wurden Parameterstudien mit unterschiedlichen Abfallarten gefahren, um die Einsatzmöglichkeiten und deren Grenzen auszuloten. Dem Erfassen reproduzierbarer Ergebnisse wurde dabei eine große Bedeutung beigemessen. Die nachfolgende Veröffentlichung stellt die Technikumsanlage vor und gibt einen Einblick in erste Versuchsergebnisse.
Copyright: | © Thomé-Kozmiensky Verlag GmbH | |
Quelle: | Recycling und Rohstoffe 7 (2014) (Juni 2014) | |
Seiten: | 12 | |
Preis inkl. MwSt.: | € 0,00 | |
Autor: | Dipl.-Ing. Franz Schellander Ing. Peter Schiffer Univ.-Prof. Dipl.-Ing. Dr. mont. Helmut Flachberger | |
Artikel weiterleiten | Artikel kostenfrei anzeigen | Artikel kommentieren |
Stoffstrombild Kunststoffe in Deutschland 2021: Zahlen und Fakten zum Lebensweg von Kunststoffen
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2023)
Die gesamte Kunststoffproduktion in Deutschland 2021 (Kunststoffwerkstoffe basierend auf fossilen und biobasierten Rohstoffen, Sekundärrohstoffen oder Nebenprodukten sowie sonstiger Kunststoffe, z. B. für Kleber, Farben, Lacke, Fasern etc.) betrug im Jahr 2021 ca. 21,1 Mio. t. Die für Kunststoffwerkstoffe relevante Produktion lag bei 10,7 Mio. t und somit ca. 4,0 % über dem Niveau des Jahres 2019.
Statistische Betrachtung von Infrarot-Sensordaten in der Aufbereitung mit Relevanz zur Brandfrüherkennung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2020)
Neue Zündquellen erschweren zunehmend die Lagerung und Aufbereitung von Abfällen, insbesondere durch Akkumulatoren oder Batterien kommt es immer wieder zu großen Schäden in abfallverarbeitenden Unternehmen. Zudem ist davon auszugehen, dass sich in den nächsten Jahren die in Verkehr gesetzte Menge an Akkumulatoren und Batterien stark erhöhen wird. Ohne geeignete Messsysteme ist es kaum möglich, Brände frühzeitig zu erkennen. Um mit dem zunehmenden Brandrisiko umzugehen und um brandbezogenen Gefahren entgegenzuwirken wer-den daher IR-Messsensoren eingesetzt. Diese Sensoren werden an verschiedenen Stellen platziert, an denen erfahrungsgemäß mit hohen Temperaturen zu rechnen ist, wie beispielsweise nach Zerkleinerungsaggregaten und anderen Aggregaten mit mechanischer Beanspruchung. Sensoren werden aber auch eingesetzt, um das Material am Ende der Verarbeitung noch einmal zu kontrollieren, bevor es in das Output-Lager befördert wird. Der vorliegende Beitrag wertet die Messdaten von mehreren Anlagenstandorten aus und vergleicht diese. Ziel ist es, Trends in den Daten zu erkennen, um mögliche Maßnahmen abzuleiten. Die Datengrundlage umfasst die Temperaturen der einzelnen Messpunkte sowie gemessenen Maximaltemperaturen. Diese Datengrundlage wird mit qualitativen Daten ergänzt, welche neben dem Grund der Temperaturüberschreitung auch das Material klassifiziert. In diesem Zuge wird auch eine statistisch signifikante Abhängigkeit mit dem verarbeiteten Material hergestellt und auch mit den im Einsatz stehenden Zerkleinerungsaggregaten in Bezug gebracht. Der Ver-gleich der Anlagenstandorte dient dabei der Abschätzung des Risikos für restmüllaufbereitende Unternehmen. Die zu vergleichenden Anlagen weisen teilweise die gleichen Inputmaterialien auf, unterscheiden sich jedoch im jährlichen Durchsatz. Der zu betrachtende Inputstrom umfasst neben gemischten Siedlungsabfällen, Gewerbeabfälle und Sperrmüll.
Elektrodynamische Fragmentierung von Betonabbruch
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2016)
Bisher wird das Potenzial des Betonabbruchs zu wenig genutzt. Dort wo recycelt wird, findet meist ein minderwertiger Einsatz statt, z.B. wird der aufbereitete Betonabbruch aus dem Hochbau als Kofferung im Strassenbau eingesetzt. Feine Fraktionen (< 4 mm) werden teilweise auch deponiert, da diese verhältnismässig viel Zement enthalten.
Innovative Metallaufbereitung beim Recycling – ausgewählte Anwendungsbeispiele –
© Thomé-Kozmiensky Verlag GmbH (6/2015)
Kreislaufwirtschaft und Ressourceneffizienz sind kennzeichnend für eine nachhaltige Volkswirtschaft. Beide Konzepte basieren auf der Wiederverwendung von Produkten und dem Recycling. Das Recycling wird allgemein als Verwertungsverfahren definiert, durch das Abfälle zu Erzeugnissen, Materialien oder Stoffen aufbereitet werden.
Optimierung des spezifischen Energieeintrages bei der Zerkleinerung von metallischen Verbundstoffen mittels Prallbrecher
© Thomé-Kozmiensky Verlag GmbH (6/2015)
Im letzten Jahrzehnt fand in der Sekundärrohstoffaufbereitung eine kontinuierliche Entwicklung – auch einhergehend mit den Veränderungen und Umwälzungen am Sekundärrohstoffmarkt – hin zu spezialisierten Metallaufbereitungsbetrieben statt.