Kontinuierliche Prozessoptimierung durch modell- und sensorbasierte Dampferzeugerreinigung

Der weltweit steigende Energiebedarf und die permanente Fokussierung auf die Schonung von Umwelt und Ressourcen bedingen eine ständige Effizienzsteigerung von komplexen industriellen Prozessen.

Die Verbrennung von abfallstämmigen Brennstoffen und Biomassen ist durch ständige Veränderung der eingesetzten Brennstoffe gekennzeichnet. Die Verschlackungs- und Verschmutzungsneigung eines Brennstoffs unterliegt zahlreichen, variierenden Prozessparametern. Die Bandbreite der Belagsintensität reicht dabei von leicht und staubförmig bis hin zu kompakt und klebrig mit der Tendenz zur Bildung von komplexen Ansätzen. Der direkte Einfluss der Prozessparameter auf die Belagsbildung erfordert die kontinuierliche Überwachung der Verschlackungs- und Verschmutzungssituation, um daraus brennstoff- und prozessspezifische Parameter für die Dampferzeugerreinigung abzuleiten. Mit dem Verbund aus direkter Messung, Datenanalyse und Datenbewertung liefert ein Diagnosesystem die notwendige Analysekompetenz, um kontinuierlich wichtige Kontrollparameter zu überwachen und in Echtzeit bedarfsorientierte Handlungsanweisungen festzulegen. Clyde Bergemann hat hierzu ein Dampferzeugerdiagnosesystem entwickelt, das den Anforderungen der Betreiber entspricht und zur Wirkungsgradsteigerung industrieller Prozesse beiträgt.

Im Rahmen dieses Beitrags werden verschiedene Methoden zur Steigerung der Prozesseffizienz von Abfall- und biomassegefeuerten Dampferzeugern untersucht.


1. Einleitung
2. Brennstoff- und verfahrenstechnische Herausforderungen der Dampferzeugerreinigung
3. Dampferzeugerdiagnose – Stand der Technik –
4. Modellbasierte Dampferzeugerreinigung
5. Sensorbasierte Dampferzeugerreinigung
6. Ergebnisse
7. Zusammenfassung
8. Literatur



Copyright: © TK Verlag - Fachverlag für Kreislaufwirtschaft
Quelle: Energie aus Abfall 11 (2014) (Januar 2014)
Seiten: 8
Preis inkl. MwSt.: € 0,00
Autor: Dipl.-Ing. Nina Heißen
M. S. Bhaumik Patel
Dr.-Ing. Christian Mueller

Artikel weiterleiten Artikel kostenfrei anzeigen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

New Waste-to-Energy Facility Energy Works Hull, United Kingdom
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Energy Works Hull (the Project) is a milestone project for the UK’s waste and renewable energy sector. It will be one of the largest gasification facilities receiving MSW in the UK, indeed in Europe. It is one of the first advanced conversion technology Projects to receive its renewable electricity subsidies through a Contract for Difference, the mechanism by which the UK Government determined to move from Renewable Obligation Certificates following its Electricity Market Reform process. It also plays a significant part of the urban regeneration of the City of Hull. The level of community engagement and benefit has resulted in the project receiving a GBP19.9M grant from the European Union’s Regional Development Fund.

Enhancing of the Energy Efficiency of an Existing Waste Incineration Plant by Retrofitting with a District Heating Network
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
The German Cycle Economy Act (Kreislaufwirtschaftsgesetz KrWG) and discussions on the turn of local energy policies led to intensive examination of options for optimising utilisation of heat produced by the waste incineration plant (MKW) in Weißenhorn. This has been carried out by the waste management firm(Abfallwirtschaftsbetrieb – AWB) of the district of Neu-Ulm over a long period of time. This was also prompted by knowledge that utilisation of already generated energy in the form of combined heat and power generation (CHP) is one of the most efficient ways of achieving climate protection targets. This results from considering which courses of action are available for climate protection.

Application of Modified NiCrMo Alloy Systems for Boiler Tube Surface Protection in Waste-to-Energy Environments
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Internationally, Waste to Energy and Incineration markets continue to grow in capacity as fossil fueled facilities decline and nuclear generation is curtailed. With this comes a greater need to burn more corrosive materials combust at higher temperatures and extract more energy. The reliability burden that this places on operators of plants is re-opening opportunities for thermal spray solutions as a cost effective solution for boiler tube protection. Where maintenance costs, opportunity costs and access restrictions may preclude alternative in-situ technologies, thermal spray technology may fill a gap in providing new reliable and flexible process and materials technologies for both mid- and long-term protection of water wall and superheater tubes. While historically thermal spray coating solutions have had a spotty record in waste to energy environments, advances in both process and materials technology specifically for WTE environments is such that coating performance now approaches the performance of high alloy wrought materials. This is verified through accurate laboratory modeling and scale tests and trials conducted by OEM’s and plants.

Innovative Application Methods of Slags from High-Temperature-Gasifying-and-Direct-Melting System
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
JFE High-Temperature Gasifying and Direct Melting Furnace System (hereinafter Gasifying and Melting System) was developed to treat any kind of wastes and to contribute to energy and material recovery. Gasifying and Melting System was developed by integrating company’s original technologies for the iron-making blast furnace and fluidized bed for incineration plants, which the company cultivated over many years. The company’s advanced technologies in these two different fields were combined and integrated into the unique Gasifying and Melting System. This system is a proven technology that realizes high performance

Overview of the Pyrolysis and Gasification Processes for Thermal Disposal of Waste
© TK Verlag - Fachverlag für Kreislaufwirtschaft (9/2016)
Thermal treatment of waste started in the 1870s in England with the first waste incineration plants and this technology was in short time adopted by many industrialised countries. Starting in the late 1970s waste incineration was blamed for emission of toxic compounds, in particular of dioxins, and public pressure initiated the decree of more and more stringent air emission standards in all countries which, again, induced significant improvement of the environmental performance of waste incineration.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?