Bei der Herstellung von einer Tonne Roheisen fallen in integrierten Hüttenwerken rund 300 kg schmelzflüssige Schlacke mit ungefähr 1500 °C an. Dies bedeutet, dass bei der derzeitigen Roheisenerzeugung 400 Mio. Tonnen Schlacke weltweit als Nebenprodukt erzeugt werden. Er-folgt eine rasche Abkühlung dieser Schlacke, entsteht ein amorphes Produkt, das als Hüt-tensand bekannt ist. Aufgemahlen wird dieser wegen seiner latent hydraulischen Eigenschaften als Binder in der Zementindustrie eingesetzt. Stand der Technik sind geschlossene nasse Granu-lationsverfahren, die eine rasche Kühlung der schmelzflüssigen Schlacke gewährleisten. Diese Verfahren haben jedoch bestimmte Nachteile, da das im Kreislauf geführte Wasser rückgekühlt und der Hüttensand für die Zementindustrie nachgetrocknet werden muss. Zeitgleich wird die in der geschmolzenen Schlacke enthaltene Wärmemenge vernichtet und kann keiner techni-schen Nutzung sinnvoll zugeführt werden.
In integrierten Hüttenwerken fällt Hochofenschlacke mit rund 1500 °C und einem Energieinhalt von ca. 1,5 GJ/Tonne an. Diese wird zum Großteil in Europa nass granuliert, wodurch der sogenannte Hüttensand entsteht, der aufgrund seiner latent hydraulischen Ei-genschaften an die Zementindustrie weiterverkauft werden kann. Der Nachteil dieses Verfahrens ist, dass die in der schmelzflüssigen Schlacke gebundene Energie durch den raschen Abkühlvorgang mit Wasser verloren geht und nicht sinnvoll weitergenutzt werden kann. Mit dem Verfahren der trockenen Schlackengranulation soll künftig diese Energie erschlossen werden, wobei die erstarrte Schlacke hinsichtlich ihrer Eigenschaften weiterhin für die Zementindustrie brauchbar sein muss. Das Prinzip beruht auf dem sogenannten "Rotating-Cup"-Verfahren, bei dem die schmelzflüssige Schlacke auf ein sich schnell drehendes Teller aufgebracht und in kleine Tröpfchen zerrissen wird. Durch die Wärmeübertragung von Schlacke zur Luft soll ein rasches Erstarren der Partikel und eine möglichst hohe Ablufttemperatur zur weiteren Nutzung erreicht werden. Diesbezüglich wurde im Technikum des Lehrstuhls für Thermoprozesstechnik an der Montanuniversität Leoben im Auftrag von Siemens VAI eine Versuchsanlage zu Forschungszwecken errichtet.
Copyright: | © Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben | |
Quelle: | Depotech 2012 (November 2012) | |
Seiten: | 4 | |
Preis inkl. MwSt.: | € 2,00 | |
Autor: | Markus Kofler Klaus Doschek Univ. Prof. Dipl.-Ing. Dr.techn. Harald Raupenstrauch | |
Artikel weiterleiten | In den Warenkorb legen | Artikel kommentieren |
Erfahrungen im Motorenbetrieb mit Deponie- und Biogas
© Verlag Abfall aktuell (2/2015)
· Deponiegas entsteht durch die bakterielle Zersetzung von Müll und besteht im Wesentlichen aus Methan und Kohlendioxid
· Biogas entsteht üblicherweise durch die Fermentation von Biomasse und besteht im Wesentlichen ebenfalls aus Methan und Kohlendioxid
CO2- und Energiebilanz verschiedener Verfahren der Bioabfallverwertung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2012)
Für die Verwertung von Bioabfällen stellt die Kompostierung nach wie vor das vorwiegende Behandlungsverfahren dar. In den letzten Jahren sind andere Verfahren in den Mittelpunkt gerückt, die auf die Gewinnung von Energie abzielen, insbesondere die Vergärung und Verbrennung. Diese Verfahren sind jedoch in der Regel mit höheren technischen Aufwendungen verbunden. Weiterhin resultieren unterschiedliche Produkte aus den unterschiedlichen Verfahren.
Abfallbehandlung in Jordanien mit dem Fokus der Energiegewinnung
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2012)
Die Behandlung von Abfällen ist immer verbunden mit Emissionen mit signifikanten Auswirkungen auf die Umwelt und das Klima. Laut Intergovernmental Panel on Climate Change (IPPC) trägt der Abfallsektor ebenso wie der Abwasserbereich mit ca. 2,8 % zu den weltweiten Treibhausgasemissionen bei. Vor diesem Hintergrund wird auch die Relevanz für ein integriertes Abfallbehandlungskonzept für den Umweltschutz deutlich. Diese Relevanz der Abfallwirtschaft und Abfallbehandlung wurde in Jordanien in den letzten Jahren erkannt und erste Schritte hinsichtlich Nachhaltigkeit unternommen.
Auswirkung aktueller Änderungen im Abfall- und Energierecht auf die Biogasbranche
© Institut für Abfall- und Kreislaufwirtschaft - TU Dresden (9/2011)
Der rechtliche Rahmen für die Verwertung von Bioabfällen und damit auch für die Vergärung durchläuft derzeit vielfältige Entwicklungen. Die Förderung einer getrennten Sammlung von Bioabfällen und deren Verwertung erweisen sich als zentrale Anliegen aktueller Gesetzesvorhaben. Dies gilt zum einen für die im Gesetzgebungsverfahren befindliche Novellierung des Kreislaufwirtschaft- und Abfallgesetze1, mit der das Bundesumweltministerium das Ziel einer flächendeckenden Einführung der getrennten Bioabfallsammlung zum Zwecke der Verwertung von Bioabfällen verbindet.
Establishment of the first Greek bioenergy district in Western Thessaloniki
© Aristotle University of Thessaloniki (6/2009)
Biomass produced energy has an important role to play in meeting EU energy targets. In Greece, biomass represents a very promising, but unexploited, renewable energy source. Aim of the present work is to promote the wide scale biomass energy production in Greece, by establishing the first Greek Bioenergy-District in Thessaloniki.