Leistungsspektrum von Vergärungsanlagen am Beispiel der Raumbelastung

Für eine vollständige regenerative Energieversorgung sind neben der Energieeinsparung und der Energieeffizienzerhöhung im Wesentlichen zwei Voraussetzungen zu schaffen: die Grundlastsicherung durch klimatisch unabhängige Energieträger und die bedarfsgerechte Energiebereitstellung an jeder Verbrauchsstelle des Versorgungsnetzes. Zur Grundlastsicherung können in einem regenerativen Verbundnetz Biomassenenergie sowie Energiespeicher eingesetzt und durch Wind-, Sonnen- und Wasserenergie ergänzt werden, mit denen die Speicher geladen und die Spitzenlasten abgedeckt werden.

Für die regenerative Energieversorgung können gasförmige Brennstoffe aus Biomasse wie nachwachsenden Rohstoffen, Wirtschaftsdünger, Klärschlamm oder Deponiegase einen Beitrag leisten. Die verfahrenstechnischen und biochemischen Randbedingungen für die Umsetzung von Biomasse auf mikrobiellem Wege sind durch viele Untersuchungen hinreichend bekannt. Dennoch weisen großtechnische Anlagen zum Teil erhebliche Abweichungen bezüglich der erzielbaren Prozessstabilität und Biogasausbeute auf. In diesen Ausführungen wurden regionale Betriebsparameter, hier am Beispiel der Raumbelastung, von über 40 Biogasanlagen ermittelt.
Eine eindeutige Zuordnung, nach welchen prozesstechnischen Kriterien die Raumbelastung für die betrachteten Biogasanlagen eingestellt wird, war nicht möglich. Viele Vergärungsanlagen werden, wenn man die Raumbelastung auf das vorhandene Fermentervolumen bezieht, im Hochlastbereich gefahren. In diesem Bereich weisen die Anlagen insbesondere bei thermophiler Betriebsweise eine geringe Toleranz gegenüber Temperaturschwankungen und somit keine hohe Prozessstabilität auf. Im praktischen Betrieb der Anlagen sind nur unzureichende Informationen über die tatsächliche Raumbelastung vorhanden, sodass die Effizienz vieler Vergärungsanlagen sowohl im Sinne der Prozessstabilität als auch in Bezug auf die Biogasausbeute verbesserungswürdig ist. Um den Betrieb der Anlagen zu gewährleisten, werden die Verweilzeiten zum Teil unnötig vergrößert, sodass die Anlageneffektivität sinkt. Wenn die regenerativen Energieträger einen zunehmenden Anteil an der volkswirtschaftlichen Energieversorgung haben sollen, muss das vorhandene Fachwissen verstärkt in die Praxis hineingetragen werden, um die Energieausbeute und die Prozessstabilität bei der geringsten Flächennutzung zu verbessern.



Copyright: © wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH
Quelle: Heft 12 - 2012 (Dezember 2012)
Seiten: 6
Preis inkl. MwSt.: € 4,00
Autor: Prof. Dr.-Ing. Frank R. Kolb
Dipl.-Ing. (FH) Christoph Bachmann

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

Kombinierte Wärmelieferung aus einer Biogasanlage und einem Biomasseheizwerk
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Es ist bekannt, dass zahlreiche bestehende Biogasanlagen (BGA) über kein oder ein nur unzureichendes Wärmenetz verfügen. Nach einer Befragung des Deutschen Biomasseforschungszentrums (DBFZ), die im Rahmen des EEG Monitoring Berichtes –„DBFZ Report Nr. 12 vom März 2012“- bei Anlagenbetreibern durchgeführt wurde, beziehen rund 80 % aller bundesdeutschen Biogasanlagen den KWK – Bonus für einen Teil ihres erzeugten Stroms. Vorsichtige Schätzungen des DBFZ nennen eine Ø 45 %-ige externe Wärmenutzung nach Abzug der Eigen-wärmebedarfsmengen in Fermentern, Nachgärbehältern und evtl. Hygienisierungsstufen. Etwa die Hälfte der Anlagenbetreiber, so der Monitoring Report, nutzen zwischen 20 % und 70 % der nach Eigennutzung verfügbaren Wärme.

Überschusswärmenutzung aus Bioabfallvergärungsanlagen – Erfahrungen aus Praxisbeispielen
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Insgesamt hat die getrennte Erfassung von Bio- und Grünabfällen in Deutschland bereits ein hohes Niveau erreicht, wobei die Biomasse bislang überwiegend rein stofflich genutzt wurde. In jüngster Zeit erlangt die Vergärung zur Behandlung von Bio- und Grünabfällen in Deutschland eine größere Bedeutung. Um die im Biogas enthaltene Energie effizient zu nutzen, ist neben der Strom- auch eine Wärmenutzung von Bedeutung. Diese ist an den Standorten der Anlagen oftmals nicht in ausreichendem Umfang gegeben, so dass die Art der Biogasnutzung auch unter Berücksichtigung innovativer Wärmenutzungskonzepte standortspezifisch betrachtet werden muss. An Praxisbeispielen werden derzeit realisierte Möglichkeiten der Biogas- und Überschusswärmenutzung dargestellt.

Mykotoxine in Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
In der letzten Zeit werden Mykotoxine als eine mögliche Ursache für Hemmungen im Biogasprozess besprochen. Neben den möglichen Hemmungen im Prozess führen Mykotoxine auch zu Lagerungsverlusten und bewirken somit in zweierlei Hinsicht wirtschaftliche Verluste. Als eines der wichtigsten Substrate kommt Maissilage eine besondere Bedeutung zu. Daher werden Mykotoxine, die in Maissilage vorkommen können besprochen und die derzeitigen Kenntnisse über die Mykotoxine in Biogasanlagen kurz vorgestellt. Zum Schluss wird auf den Forschungsbedarf in dem Gebiet hingewiesen.

Wirtschaftliche Bewertung von Anlagenkonzepten zur Bioabfallvergärung
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Gegenwärtig spielt der Einsatz von Bio- und Grünabfällen aus getrennter Sammlung, gewerblichen organischen Abfällen (Lebensmittel; Speisereste aus Kantinen, Großküchen und Gastronomie) sowie Abfällen aus der Nahrungsmittelindustrie bei der Biogaserzeugung in Deutschland nur eine untergeordnete Rolle. Die Zahl der Abfallvergärungsanlagen steigt jedoch kontinuierlich. Infolge der Novellierungen des Erneuerbaren-Energien-Gesetz (EEG) 2012 und 2014 rückt die Vergärung von Bioabfällen neben der Installation von landwirtschaftlichen Gülle- Kleinanlagen stärker in den Fokus. Zum Stand 31.12.2014 sind in Deutschland knapp 140 Abfallvergärungsanlagen in Betrieb, die ausschließlich oder überwiegend organische Abfälle vergären. Dabei werden in 83 Anlagen Bio- und Grünabfälle aus der getrennten Sammlung (Biotonne) eingesetzt – mit sehr unterschiedlichen Anteilen am Gesamtinput der Anlage. Insgesamt handelt es sich nach Datenlage des DBFZ bei 68 Anlagen um Bioabfallvergärungsanlagen, in denen ausschließlich oder überwiegend Bioabfälle gemäß § 27a EEG 2012 bzw. § 45 EEG 2014 Einsatz finden. Mit der im EEG 2012 eingeführten Direktvermarktung und der Flexibilitätsprämie wurden weitere Anreize geschaffen, die auf eine stärker systemorientierte Stromeinspeisung von Biogasanlagen abzielen. Inwieweit diese Erwartungshaltung umgesetzt wird, entscheidet die Wirtschaftlichkeit über die Gesamtbetriebslaufzeit. Eine Verdopplung der installierten elektrischen Leistung stellt für eine durchschnittliche Modellanlage gegenwärtig die wirtschaftlich sinnvollste Variante dar.

Analytische Untersuchung der thermischen Optimierung von Biogasanlagen
© Agrar- und Umweltwissenschaftliche Fakultät Universität Rostock (6/2015)
Eine Wirtschaftlichkeit von Biogasanlagen ist mit den neuen gesetzlichen Rahmenbedingungen schwieriger darstellbar als mit den Bonussystemen der vorangegangen Novellierungen des EEG. Um diese zu steigern ergeben sich mehrere Varianten, die oftmals mit weiteren Investitionen verbunden sind. Direkte technische Verbesserungen, aus denen schnelle ökonomische Erfolge resultieren, bedürfen daher einer genaueren Analyse der Randbedingungen. Im Rahmen dieses Beitrages wird der Wärmebereich landwirtschaftlicher Biogasanlagen untersucht, insbesondere die Optimierung des Eigenwärmebedarfs, die in der Vergangenheit kaum berücksichtigt wurde und somit einiges an Potential erwarten lässt. Als Datengrundlage dienen 10-jährige Dokumentationen von Eigenwärmeverbräuchen, Fütterungsprotokolle sowie Temperaturmessungen verschiedener Wärmebilanzparameter wie Substrat, Biogas, Umgebung etc. Nach Auswertung der Messungen und erster Bilanzierungen wurde festgestellt, dass die Aufrechterhaltung der Fermentertemperatur die meiste Wärmeenergie verbraucht und gleichzeitig auch das größte Optimierungspotenzial aufweist. Erste Optimierungsmöglichkeiten im Substratbereich wurden identifiziert, wie passive und aktive Dämmung der Substrat-Einbringsysteme und Wärmerückgewinnung aus dem Nachgärablauf. Dabei wurden Einsparpotenziale von mehreren hundert Megawattstunden im Jahr kalkuliert, je nach Menge und Temperaturanhebung der eingesetzten Substrate.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...