A Study on Performance and Emissions of a 4-stroke IC Engine Operating on Landfill Gas with the Addition of H2, CO and Syngas

Fossil fuels supply nearly 80% of world energy demand. Burning of fossil fuel always has associated with it emissions in the forms of nitrogen oxides (NOX), sulfur oxides (SOX), carbon monoxide (CO), unburned hydrocarbons (UHC). These emissions have environmental impacts that are both local and global. Moreover, in recent years, air quality has become a severe problem in many countries, and the interest to replace fossil fuels with renewable and sustainable energy sources has increased for reducing CO2 and methane emissions.

Landfill gas, a potential alternative energy source, is generated from anaerobic decomposition of municipal solid waste deposited in landfills. The main portion of landfill gas is mainly comprised of methane and carbon dioxide together with a smaller amount of oxygen and nitrogen and trace amounts of other gases as shown in Table 1.1. Methane is a highly potent greenhouse gas with a global warming effect almost 21 times greater than carbon dioxide when directly released into the atmosphere. Recently, landfill gas has attracted considerable interest as a source of alternative energy for generating heat, power or fuel with the benefit of reducing direct methane emission into the atmosphere, for example there have been about 450 LFGTE projects in the US [2]. However, there are some disadvantages in the use of landfill gas: composition changes considerably depending on the landfill condition, season, and the type of waste, corrosiveness, lower heating value, high maintenance issues and capital costs. Due to these disadvantages, landfill gas is sometimes not considered as a good sustainable energy resource. Hence, in order to effectively utilize the landfill gas, these problems must be adequately addressed through appropriate engineering and technological approaches.
 
In this research, a small spark ignition engine was operated using pure methane, a simulated landfill gas, and the addition of hydrogen and carbon monoxide, and these various fuels were compared in terms of the engine performance and emissions for the purpose of assessing the efficient utilization and direct application of landfill gas.



Copyright: © WtERT USA , Columbia University, Earth Engineering Center
Quelle: Master´s Thesis 2010 (Dezember 2010)
Seiten: 56
Preis inkl. MwSt.: € 10,00
Autor: Jechan Lee

Artikel weiterleiten In den Warenkorb legen Artikel kommentieren


Diese Fachartikel könnten Sie auch interessieren:

BQS 10-1 „Deponiegas“ – Anforderungen an den Stand der Technik zum Klimaschutz
© Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH (4/2023)
Am 4. Juli 2020 trat die Änderung der DepV vom 30. Juni 2020 in Kraft. Eine der Änderungen umfasste die Anforderungen an die Deponieentgasung in Anhang 5 Nummer 7. Bislang wurde dort ohne weitere Konkretisierung gefordert, dass Deponiegaserfassung, -behandlung und -verwertung nach dem Stand der Technik durchzuführen seien. Dies führte in der Praxis zu erheblichen Vollzugsunterschieden.

Qualitätsgesicherte Entgasung von Abfalldeponien auf der Grundlage der VDI-Richtlinie
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Eine gute Deponiegaserfassung, also eine solche, bei der ein hoher Erfassungsgrad erzielt wird, hängt neben der Auslegung, dem Betrieb und der Wartung mit Instandhaltung wesentlich davon ab, in welchem Umfang alle diese Ziele erreicht werden. Dies ist im Wesentlichen eine Frage der Qualität. Nun kamen zuletzt immer mehr die Auswirkungen der Deponiegase auf den Treibhausgaseffekt in den Blick. Hierbei wurde nochmals verdeutlicht, dass noch wesentliche Potenziale durch die Deponiebetreiber zu heben sind. Dies wurde in Deutschland dadurch mit angegangen, dass in technischen-Richtlinien (VDI) die technischen Grundlagen einheitlich zusammengestellt wurden und in einer behördlichen Mitteilung die qualitätssichernden Anforderungen benannt werden. Seit März 2022 müssen sich nun die Deponiebetreiber darum kümmern.

Energetische Nachnutzung des Deponiestandortes der Massenabfalldeponie Klagenfurt Hörtendorf
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Die Deponie Hörtendorf liegt im Osten von Klagenfurt am Wörthersee und wurde als Massenabfalldeponie in einer ausgebeuteten Lehmgrube errichtet. Bei der gegenständlichen Deponie handelt es sich um eine Altablagerung, auf der bis in das Jahr 2008 Hausmüll, Industrie- und Gewerbeabfälle, Sperrmüll, Straßenkehricht, Friedhofabfälle, Rechengut, Klärschlamm, Bauschutt etc. der Stadt Klagenfurt und des umliegenden Großraumes abgelagert wurden (UTC Umwelttechnik Ziviltechniker GmbH, 2021). Die Haldendeponie mit einer Fläche der Abfallschüttungen von ca. 120.000 m² verfügt über keine, dem Stand der Technik entsprechende, Basisabdichtung, es wurde jedoch bereits in den Jahren 1989 bis 1991 als Standortsicherungsmaßnahmen das gesamte Deponieareal im Ausmaß von 155.000 m² vollständig mit einer in den Grundwasserstauer einbindenden Schmalwand umschlossen (Ertl, 1991). Die Deponie verfügt über ein, dem Stand der Technik entsprechendes, aktives Deponiegaserfassungssystem, welches die anfallenden Deponiegase über rund 100 vertikaler Gasbrunnen und über ein horizontales Gasleitungsnetz erfasst und einer thermischen Entsorgung zuführt. Nach der Durchführung entsprechender baulicher Anpassungen an den Stand der Technik soll der Deponiestandort künftig zu Erzeugung von elektrischer Energie durch die Errichtung einer den Deponiekörper überspannenden Photovoltaikanlage genutzt werden.

Nachhaltige Potenziale Deponiegas/Optimierung Gaserfassung/ praktische Bestimmung Gaserfassungsgrad
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
In Siedlungsabfalldeponien entsteht bei der Umsetzung biogener Organik methanhaltiges Deponiegas, welches ein sehr großes Treibhausgaspotenzial aufweist. Dieses Deponiegas in ausreichender Form in einem heterogenen Haufwerk (Deponiekörper) adäquat zu erfassen, gestaltet sich, aus jahrzehntelangen Erfahrungen heraus, als äußerst schwierig (komplexes System eines physikalischen Aufbaus, Aktivierung biologischer und biochemischer Abbaubauprozesse, unterschiedliche Temperatur- und Unterdruckniveaus, etc.).

Quantitative Deponiecharakterisierung: Petrophysikalisch gekoppelte Inversion komplementärer geophysikalischer Daten
© Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft der Montanuniversität Leoben (11/2022)
Die global vorherrschende Entsorgung von Siedlungsabfällen in Deponien führt zur Produktion von Deponiegasen, die einerseits einen erheblichen Teil der globalen Treibhausgasemissionen ausmachen und andererseits speziell in besiedelten Gebieten eine potentielle Gefahr für die Bevölkerung darstellen. Ein entscheidender Faktor für die Entstehung von Deponiegasen ist der Wassergehalt innerhalb des Deponiekörpers.

Name:

Passwort:

 Angemeldet bleiben

Passwort vergessen?

Der ASK Wissenspool
 
Mit Klick auf die jüngste Ausgabe des Content -Partners zeigt sich das gesamte Angebot des Partners
 

Selbst Partner werden?
 
Dann interessiert Sie sicher das ASK win - win Prinzip:
 
ASK stellt kostenlos die Abwicklungs- und Marketingplattform - die Partner stellen den Content.
 
Umsätze werden im Verhältnis 30 zu 70 (70% für den Content Partner) geteilt.
 

Neu in ASK? Dann gleich registrieren und Vorteile nutzen...